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We consider separated oscillatory flows in asymmetric channels when the Strouhal 
number is sufficiently great for the flow not to be quasi-steady, but where the flow 
is not dominated by viscous effects. In this range, we show that numerical calculations 
predict the expansion of vortices during a deceleration and we investigate these flows 
in several different geometries. These calculations are supported by experimental 
observations of the motion of small particles immersed in water. 

1. Introduction 
In  this paper we present the results of observations and calculations of oscillatory 

flows in asymmetric channels at intermediate Strouhal numbers. We are concerned 
with flows in channels in which the geometry imposes such pressure gradients on the 
fluid that separation is the ultimate outcome. Flow under these conditions in a 
symmetric channel has been described by Sobey (1980) and Stephanoff, Sobey & 
Bellhouse (1980), hereafter referred to as I and 11. Here we shall see if asymmetries 
in the channels modify the conclusions of those papers. 

In  a channel of minimum gap 2h with a flux 2hU of fluid of viscosity v, the single 
most important parameter that characterizes the flow is the Reynolds number 

hU 
R = - .  

V 

If the flow is unsteady, with frequency R and peak flux 2hU, another parameter 

hR occurs, the Strouhal number 
S = -  

U ’  

One of the main conclusions of I concerned the importance of observing that in 
oscillatory flow both these parameters are equally important. If the Strouhal number 
is large, 0(1), then viscosity dominates the flow and inertial separation never occurs, 
regardless of the size of the Reynolds number. If the Strouhal number is O( then 
a true quasi-steady flow exists, as described by Sobey (1982). Between these orders 
there is an intermediate range in which inertial separation occurs but the flow does 
not behave in a quasi-steady fashion. In  a symmetrical channel i t  is observed that 
there is a critical Reynolds number that must be exceeded in order for separation 
to  occur. For Reynolds numbers below the critical value the flow is dominated by 
viscosity. The critical Reynolds number is a function of channel geometry, and 
increases weakly with Strouhal number in the range we are considering. For very 
small Strouhal numbers the critical value is the same value a t  which a steady flow 
separates, as indicated by describing that region as quasi-steady . It should also be 
noted that a second and larger critical Reynolds number will exist at which the flow 
will cease to be laminar and become turbulent. 
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FIGURE 1. Calculated streamlines in the upper A f  of a symmetric channel; R = 7 
L = 8, D = 2. (a )  t = 0 1 ;  ( b )  0.25; ( c )  0.45; ( d )  0.5; ( e )  0 5 5 ;  (f) 0.75. 

s = 001, 

If the critical Reynolds number is exceeded then separation occurs during 
acceleration of the flow. This situation is illustrated in figure 1 for flow in a 
symmetrical furrowed channel. Initially the flow is subjected to  a pressure gradient 
in the direction of the flow because of the acceleration. This causes the fluid to stream 
through the channel without separating. The channel geometry will impose a pressure 
gradient opposing the direction of flow in the region of increasing channel width. The 
magnitude of this adverse pressure gradient will increase as the flow magnitude 
increases, while the pressure gradient driving the flow will decrease as the time of 
peak flow approaches. Eventually the adverse pressure gradient will exceed the 
pressure gradient driving the flow and shortly after this the flow may separate (figure 
1 a) .  Note that as we are discussing Reynolds numbers that exceed the critical value 
we are assuming that separation does in fact happen. Once separation occurs a vortex 
forms and grows rapidly, until a t  peak flow there may be a considerable region of 
recirculating flow (figure 1 b) .  It is during the deceleration that the vortices behave 
in a remarkable manner. As the flow magnitude decreases, the vortices do not 
decrease in size, as happens in quasi-steady flow, but expand, gradually bulging into 
the mainstream (figure l c ) .  As the flux of fluid through the channel vanishes, the 
vortices remain spinning in the fluid, and they effectively occupy the entire channel 
(figure 1 d) .  This behaviour is possibly not surprising because although the Reynolds 
number may be large we are dealing with a viscous fluid, and continuity of stress 
should ensure that moving fluid entrains stationary fluid before the whole fluid would 
come to rest. Indeed flow during deceleration is subjected to a general adverse 
pressure gradient tending to accelerate any existing region of reverse flow. If the flux 
of fluid now becomes negative then near the walls the fluid is already flowing 
backwards and the mainstream passes between the vortex and the walls, ejecting the 
vortex from the furrow (figure 1 e ) .  Eventually the ejected vortex is entrained into 
the mainstream by viscous action, and the separation process repeats itself, a new 
counter-rotating vortex forming in the furrow (figure If) .  The process of vortex 
ejection and entrainment occurs very rapidly a t  the time of reversal of the fluid flux. 
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Our main concern here is the effect on the flow patterns we have described above 
of asymmetries in the channel geometry. The process of vortex formation and 
ejection is a powerful source of convective mixing, and devices that utilize this 
process may suffer from imperfect manufacture, such as misaligned channel walls, 
so i t  is important to know if poor alignment would substantially alter the structure 
of the flow cycle. Indeed i t  might be thought that deliberate introduction of 
asymmetries would augment the vortex-mixing process. I n  addition, the asymptotic 
work of Smith (1976) predicts that in steady flow through an asymmetric channel 
the mainstream will follow the mean displacement of the walls, a conclusion that is 
supported by the calculations and observations we present. 

I n  dealing with the effect of small channel asymmetries there are guidelines we 
would expect to be followed. If a flow in a symmetric channel separates at a particular 
Reynolds number, then at the same Reynolds number an asymmetry would inhibit 
separation if the rate of increase of channel width in the flow direction was decreased. 
This would lower the adverse pressure gradient due to changing cross-section while 
the forward pressure gradient driving the main flux of fluid would be largely 
unaltered. Conversely, an asymmetry that increased the rate of channel expansion 
would reduce the Reynolds number at which separation occurred. 

We have used both numerical and experimental methods to  study flows in 
asymmetric channels. I n  $2 we describe the mathematical problem and discuss details 
of the numerical solution, and in $3  we describe the experiments. In  $4 we study flow 
through a channel with sinusoidal wall variations where two walls can be misaligned 
by some angle #, where 0 < # < 7 ~ .  I n  $5 we look at a few other interesting geometries, 
and finally in $6 we present our conclusions. 

2. Mathematical formulation 

channel of infinite extent whose boundaries are given by 
Let 2 and tj be a two-dimensional Cartesian coordinate system, and consider a 

j j  = hf(;), j j  = - h g ( t ) ,  

where f and g are twice-differentiable functions with period L,  so thatf(x+L) = f(x) 
and g(z+ L )  = g(x) (see figure 2). A fluid of kinematic viscosity v flows through the 

@(i?) = 2hU sin 2nRf, channel with flux 0, where 

and i? is the time. If .i2 and 8 are the velocities in the 2- and $directions respectively, 
we denote non-dimensional coordinates by 

so that the boundaries become z = 0 and z = 2. We define a stream function I+ by 

where 2 29’ - (f ‘+g ’ )z  

f+s P2(%4 = pl(z) = f(x) +g(x) 

This simple transform ‘straightens’ the walls, but of course will only provide the basis 
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FIGURE 2. Schematic description of an asymmetric channel 

of a suitable numerical scheme if the walls are smooth, hence the requirement that 
f and g are twice-differentiable. I n  the cases we deal with here f and g are of sinusoidal 
variation and so this transformation is extremely useful. 

I n  the transformed coordinates (x, z ) ,  Laplace’s operator V2 becomes 

Then we can define the vorticity w by 

u =  -v2+, 
and the vorticity-transport equation is 

au a a a 1 
at ax az aZ R 

s -+- (uw)  + p ,  - (uw) + p ,  - (vw) = - v 2 w ,  

where u and v are the non-dimensional velocities d / U  and d/U respectively. 
The boundary conditions are then 

$Iz-,, = 0, = sin 2mt, 

$ , = O  on z =  0 and z = 2 .  

We define the vortex strength A$ to  be the maximum value of [$I minus the value 
of l+l on the wall of the channel at that time. We have solved these equations 
numerically using a finite-difference scheme. Near z = 0 and z = 2 we used a fine mesh, 
while in the centre of the channel a coarse mesh was used. The vorticity-transport 
equation was solved using upwind differencing and a Dufort-Frankel substitution. 
The computational region was 0 < z < 2 and 0 < x < L,  and the periodic nature of 
the walls allowed the solution to  be iterated until the boundary conditions 

+lz-o = +Iz=L, wlz-0 = W1z-L 

were satisfied. These particular boundary conditions represent an enormous 
simplification of the numerical problem, as i t  is not necessary to  use approximate 
boundary conditions at upstream and downstream boundaries of the computational 
region. Further detail of the numerical solution are presented in Sobey (1980). 
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3. Experimental details 
We have photographed flow patterns in asymmetric channels using the same 

methods as in 11. A variable-speed motor drives a piston via a swash plate of 
adjustable stroke, and small channels machined from Perspex were attached to the 
piston unit. A slide projector was used as a simple light source. Small crystals of 
guanine (Merlmaid AA, The Mearl Corp., N.Y.) were used to visualize the flow. Such 
crystals are very small, about 10 pm, and have extremely high reflectivity. They are 
almost neutrally buoyant, settling out of water in a few hours, while a typical 
experiment would last a few minutes. The channels used had a half gap of 1 mm and 
the furrows were 4 m m  long. Still photographs were taken using Kodak 2475 
Recording film and an exposure time of & sat fl5.8. The photographs shown in figures 
4 and 9 are meant to give a qualitative idea of the flow patterns, and are not a great 
deal of use in quantitative studies. 

4. Channels with sinusoidal walls 
Here we shall restrict our attention to the case 

g(x) = l + : D ( l + c o s ( ~ + $ ) ) ,  

where $ represents the angle by which the two walls of the channel have been 
misaligned, either accidentally or deliberately. We shall refer to the walls = hf and 
8 = hg as the upper and lower walls respectively. One of the main contentions of I 
was that during a deceleration a vortex would not die away but rather grow until 
it  filled the channel as well as the furrow in which it originated. We have described 
this process for a symmetrical channel in Q 1 ,  and it is illustrated in figure 1. Here 
we discuss how the process of vortex formation and expansion is affected by offset 
channels of the type we are considering. To this end consider first the case $ = 71, 
where the channels are offset by exactly half a period and thus form a sinuous channel. 
Typical calculated flow patterns for this type of geometry are shown in figure 3 and 
photographs of particle motions that support the calculations are shown in figure 4. 
Early in the acceleration the fluid streams through the channel, with the flow 
direction mainly parallel to the walls. In  this particular case the channel width 
remains constant, and so there can be no adverse pressure gradient due to changes 
in the channel width, although the pressure gradient required to make the fluid follow 
a sinuous path will have a component along the wall that opposes the fluid motion, 
and eventually separation occurs in the lee of the wall crests (figures 3a, 4a ) .  When 
the flow decelerates, the vortices continue to grow in size, although i t  is apparent 
that the channel geometry has had a rather severe effect on the shape of the vortices 
(figures 3b ,  4b) .  When the flux of fluid through the channel has almost vanished, the 
vortices expand to fill the channel and the centres of the vortices move upstream a 
short distance (figure 3c).  Main-flow reversal now produces a most singular effect. As 
explained in I, an effect of vortex expansion is to leave residual motion, and this gives 
the fluid a preferred direction of motion when the main flow reverses direction. In  a 
symmetric channel this effect resulted in the ejection of the vortices from the furrows 
and their being trapped in the centre of the channel as the main flow moved between 
the vortices and the walls. Here flow reversal still results in fluid moving around each 
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FIQURE 3. Calculated streamlines in a sinuous channel; R = 50, S = 0.01, L = 8, D = 2. 
(a )  t = 025; ( b )  040; (c) 049; ( d )  0502. 

vortex, but now the vortices no longer appear in pairs adjacent to each other, but 
rather as a. string along the channel. This means that the main flow must initially 
follow a highly convoluted path (figures 3 d ,  4 d ) .  The main flow then rapidly entrains 
fluid from the vortices, reducing their size until they disappear. The cycle of vortex 
formation, expansion, ejection and entrainment then continues as the flux of fluid 
through the channel oscillates. 

Next we consider channels with a phase shift 4 lying between 0 (described by 
figure 1 )  and 71 (described by figure 3). As 9 varies we would expect to observe 
several different effects. Firstly there will be a difference between the strength of the 
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0 + 
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W 

FIGURE 6 (a-d). For caption see facing page 

vortices that form on the upper and lower walls. Secondly, during any expansion of 
the vortices there will be an interaction between vortices of different sizes and 
strengths. Finally, there is the question of how the vortices react to reversal of the 
main flow. In  figure 5 we show the effect of varying Q, on the instantaneous streamlines 
for eight values of Q, and a t  two times, peak flow and just after reversal of the main 
flow. In the case of a symmetric channel (figure 5 a ) ,  at peak flow the vortices fill the 
furrows with the vortex centres located just downstream of the furrow apex. As the 
main flow reverses, the vortices are ejected and trapped in the centre of the channel 
as the main flow passes between the wall and the vortices. If Q, is increased to An, 
as shown in figure 5 (b ) ,  a t  peak flow only small asymmetry has been introduced, and 
the vortices appear almost unaffected. Main-flow reversal now results in ejection of 
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FIGURE 5 .  Streamlines at peak flow ( t  = 0 2 5 )  and just after main-flow reversal ( t  = 0 5 2 )  as the 
phase of the furrow asymmetry is measured; h' = 50, S = 0.01, L = 8, D = 2. ( a )  9 = 0;  (6) &r; (c) 
in; (4 in; ( e )  in; (f) {n; (9)  b; (h)  m. 

the vortices, but now the vortices are of unequal strength, with the lower vortex 
the stronger. This means that some fluid passes between the two vortices as well as 
between the vortices and the walls. This is obviously the start of the convoluted path 
observed in figure 3 (d). The vortex centres also appear to  have rotated relative to 
each other. If q5 increases to  in and in these effects are accentuated (figures 5c ,  d) .  
More fluid passes between the vortices on ejection, and the vortex in the lower furrow 
dominates the vortex from the upper furrow. This is also apparent from the 
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FIQURE 6. Variation of vortex strength at peak flow (t = 0 2 5 )  as phase of furrow varies; R = 50, 
S = 001, L = 8, D = 2. A$L = vortex strength on lower wall; A$, = vortex strength on upper wall. 

FIQURE 7. The critical Reynolds number for steady separation; L = 8, D = 2. R, = Reynolds 
number on the lower wall; R, = Reynolds number on the upper wall. 

streamlines at peak flow, where considerable asymmetries in the vortex position and 
sizes are seen. Continued increase in 4 results in another effect, namely the strengths 
of both vortices decrease, and, although the lower vortex dominates the upper one, 
its strength is decreasing, and eventually when 4 = 7~ some form of symmetry has 
been restored as both vortices are again of equal strength. 
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FIGURE 8. Streamlines for flow through a channel with one wall flat; R = 50, S = 0.01, L = 8, D = 2. 
(a)  t = 025; ( b )  0 4 ;  (c) 045; (d )  0495; ( e )  0505; (f) 052. 

The strengths of the two vortices a t  peak flow are illustrated in figure 6. It can 
be seen that, if q5 is a little larger than zero, both vortices are slightly weakened, but 
a t  a value of q5 near &I the upper vortex becomes much weaker than the lower one, 
and remains so until q5 = n. This also agrees with our intuition that the vortex 
strengths should be related to the rate of change of width of the channel as this is 
greater for the lower furrow. 

We have also calculated the critical Reynolds number for separation of a steady 
flow in this type of channel. The results are shown in figure 7. It should be emphasized 
that the critical Reynolds number is a function of the furrow depth and length, so 
that R, = R,(L, D ,  #) and figure 7 only shows the variation of R, as q5 changes from 
0 to n. At both # = 0 and # = n the critical Reynolds number must separate into 
two curves, one for the upper furrow and one for the lower. It is also important to 
note that if n < # < 2n the furrows reverse, and during the time of reverse main flow, 
i.e. 0.5 < t < 1, the furrows will also be reversed. 

As can be seen from figure 7 there is considerable increase in the critical Reynolds 
number as # nears n, and the maximum value is almost four times that for a 
symmetric channel. This implies that to achieve a given level of mixing using 
oscillatory flow the Reynolds number would need to be higher in an asymmetric 
channel than in a symmetric channel. 

5. Other geometries 
In  this section we look a t  several other geometries, the most important being a 

sinusoidal wall opposite a flat wall. I n  this case only one vortex forms, in the furrow 
on the sinuous wall. The basic flow cycle is illustrated in figure 8, which gives 
calculated streamlines for R = 50 and S = 0.01. We have also calculated streamlines 
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FIGURE 10. Flow in one furrow opposite two smaller furrows; R = 50, S = 001, L = 8, D = 2 (upper 
wall); L = 4, D = 1 (lower wall). (a )  t = 025; ( b )  040; (c) 045; (d) 0495; ( e )  0505; (f) 052. 

at R = 100, and they are essentially similar. During the acceleration the flow 
separates on the upper wall and a vortex forms, growing during the remainder of the 
flow acceleration and continuing to expand as the flow decelerates. However, during 
the deceleration the flow separates on the flat plate nearly opposite the downstream 
end of the furrow on the upper wall. Our calculations show that the strength of the 
lower separated region is small, indicating that its formation is due mainly to viscous 
action, i.e. that locally the reverse flow is similar to the reverse flow that would occur 
in a Stokes layer. Further evidence of this comes when the main flow reverses 
direction. The vortex from the upper furrow is ejected and moves to become attached 
to the lower wall. However, the separated region on the lower wall does not appear 
to be displaced (figure 8 e ) ,  but in our calculations remains essentially a stagnant area. 
Further increase in the mainstream flux eliminates this region and leaves only the 
ejected vortex from the upper furrow (figure Sf). We have also photographed 
oscillatory flow in this type of geometry, and in figure 9 we show observations that 
confirm the flow patterns described above. 

We have calculated the critical Reynolds number for the geometry of figure 8 to 
be R, = 8, and this indicates that the flat wall acts as we would expect; by reducing 
adverse pressure gradients due to changes in channel width, the onset of separation 
is delayed. 

Two other geometries that are interesting have two and three furrows opposite one 
large furrow. It is not obvious how the formation and interaction of vortices on the 
lower wall will occur. As can be seen from figures 10 and 11 a surprising feature 
emerges. As the flow accelerates, the fluid separates on the upper wall as well as in 
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FIGURE 11. Flow in one furrow opposite three furrows; R = 50, S = 001, L = 8, D = 2 (upper wall) ; 
L = I, D = 1 (lower wall). (a) t = 025;  (b )  0 4 ;  (c) 0.45; (d) 0.495; ( e )  0505; (f) 052. 

each of the lower furrows, although separation on the lower wall occurs first in the 
upstream furrow, but i t  is the downstream furrow that eventually dominates the 
lower wall. This can only be because the first vortex forms when the mainstream is 
relatively weak and its subsequent development is largely due to viscous diffusion 
of vorticity across the dividing streamline, while the second (and third) form when 
the mainstream flow is stronger, and thus have more energy available. I n  effect they 
obtain a greater initial kick because the main flow is greater. 

6. Conclusions 
We have presented the results of numerical calculations and observations of 

oscillatory flows in asymmetric channels when separation occurs and when the 
Strouhal number has an intermediate value. The most-striking feature of intermediate 
Strouhal number flows is the growth of the size of vortices during a deceleration. We 
have shown that this property exists in asymmetric geometries and have explored 
some of the flows that can result. Since our results are mainly numerical they lack 
a cohesive theory, but we believe that an unsteady flow about an arbitrary geometry 
will develop in a manner that can be predicted from the patterns we have shown. 
As an adequate description of steady separated flows is only just emerging in the 
literature, future work may well provide a sound theoretical description of unsteady 
separation. We hope that these calculated flows will act as a challenge in the 
development of a rational asymptotic theory of unsteady separation. 
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